

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

 St u tu Un on

K ywo d Th k yword ‘st u t’ s us d o

d f n s ru ur .

Th k yword ‘un on’ s us d o

d f n un on.

S Wh n v r b sso d w h

 s ru ur , h omp r

o s h m mory for h

m mb r. Th s of s ru ur s

gr r h n or qu o h sum

of s s of s m mb rs.

Wh n v r b sso d w h

 un on, h omp r o s

h m mory by ons d r ng h

s of h rg s m mory.

H n , Th s of un on s

qu o h s of rg s

m mb rs.

M mo y E h m mb r w h n s ru ur

s ss gn d nd un qu s or g

r of o on.

M mory o d s sh r d by

nd v du m mb rs of un on.

Va u

A t ng

A r ng h v u of m mb r

w no ff o h r m mb rs of

h s ru ur .

A r ng h v u of ny of h

m mb r w r o h r m mb r

v u s.

A ss ng

m mb s

Ind v du m mb r n b

ss d m .

On y on m mb r n b

ss d m .

In t a ng

M mb s

S v r m mb rs of s ru ur

n n on .

On y h f rs m mb r of

un on n b n d.

Q1. a) Define union. Compare Structure and Union. Q. P. Code : 23993
Ans.

Union :- A union is a special data type available in C that allows storing

different data types in the same memory location.

Q1. b) What is an error ? Explain different types of errors occurred in

program.

Ans.

Error :-

While writing c programs, errors also known as bugs in the world of

programming may occur unwillingly which may prevent the program to

compile and run correctly as per the expectation of the programmer.

Types of errors :-

Basically there are three types of errors in c programming:

1. Runtime Errors :

C runtime errors are those errors that occur during the execution of

a c program and generally occur due to some illegal operation performed

V2V CLASSES Page 1

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

in the program. For example,

 Dividing a number by zero

 Trying to open a file which is not created

 Lack of free memory space

2. Compile Errors :-

Compile errors are those errors that occur at the time of

compilation of the program. C compile errors may be further

classified as:

2.1 Syntax Errors :

When the rules of the c programming language are not

followed, the compiler will show syntax errors.

2.2 Semantic Errors :

Semantic errors are reported by the compiler when the

statements written in the c program are not meaningful to the

compiler.

3. Logical Errors :-

Logical errors are the errors in the output of the program. The

presence of logical errors leads to undesired or incorrect output and

are caused due to error in the logic applied in the program to produce

the desired output. Also, logical errors could not be detected by the

compiler, and thus, programmers have to check the entire coding of a

c program line by line.

Q1. c) Explain switch case and if-else ladder with example.

Ans.

Switch Case :-

A switch statement allows a variable to be tested for equality against a

list of values. Each value is called a case, and the variable being switched on

is checked for each switch case.

Example :

Code :

// Following is a simple program to demonstrate syntax of switch.

#include <stdio.h>

#include <conio.h>

int main()

{

int x = 2;

V2V CLASSES Page 2

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

switch (x)

{

case 1: printf("Choice is 1");

break;

case 2: printf("Choice is 2");

break;

case 3: printf("Choice is 3");

break;

default: printf("Choice other than 1, 2 and 3");

break;

}

return 0;

}

Output :

Choice is 2

If-else ladder :-

The if else ladder statement in C programming language is used to test

set of conditions in sequence. An if condition is tested only when all

previous if conditions in if-else ladder is false. If any of the conditional

expression evaluates to true, then it will execute the corresponding code

block and exits whole if-else ladder.

Example :

Code :

#include<stdio.h>

#include<conio.h>

void main()

{

int a;

printf(“Enter a number : “);

scanf(“%d”,&a);

if(a > 0)

{

printf(“\nThe number is positive “);

}

else if(a<0)

V2V CLASSES Page 3

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

{

}

else

{

}

getch();

}

Output :

printf(“\n The number is negative”);

printf(“Number is zero”);

Enter a number : 25

The number is positive.

Q1. d) Explain any four standard library functions from sting.h ?

Ans.

Standard Library Functions from string.h :-

In the C Programming Language, the Standard Library Functions are

divided into several header files.

The following is a list of functions found within the <string.h> header file:

I. Comparison functions

1. memcmp - Compare Memory Blocks

2. strcmp - String Compare

3. strcoll - String Compare Using Locale-Specific Collating

sequence.

4. strncmp - Bounded String Compare

5. strxfrm - Transform Locale-Specific String

II. Concatenation functions

1. strcat - String Concatenation

2. strncat - Bounded String Concatenation

III. Copying functions

1. memcpy - Copy Memory Block

2. memmove - Copy Memory Block

3. strcpy - String Copy

4. strncpy - Bounded String Copy

IV. Search functions

1. memchr - Search Memory Block for Character

2. strchr - Search String for Character

3. strcspn - Search String for Intial Span of Characters Not in Set

V2V CLASSES Page 4

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

4. strpbrk - Search String for One of a Set of Characters

5. strrchr - Search String in Reverse for Character

6. strspn - Search String for Initial Span of Characters in Set

7. strstr - Search String for Substring

8. strtok - Search String for Token

V. Miscellaneous functions

1. memset - Initialize Memory Block

2. strerror - Convert Error Number to String

3. strlen - String Length

Q1. e) Explain break and continue statement with example.

Ans.

It is sometimes desirable to skip some statements inside the loop or

terminate the loop immediately without checking the test expression. In such

cases, break and continue statements are used.

break Statement :-

The break statement terminates the loop (for, while and

do...while loop) immediately when it is encountered. The break

statement is used with decision making statement such as if...else. In C

programming, break statement is also used with switch...case

statement.

Syntax of break statement :

break;

Example :-

Code :

// Program to calculate the sum of maximum of 10 numbers

// Calculates sum until user enters positive number

include <stdio.h>

include <conio.h>

int main()

{

int i;

double number, sum = 0.0;

for (i=1; i <= 10; ++i)

{

printf("Enter a n%d: ",i);

V2V CLASSES Page 5

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

scanf("%lf",&number);

// If user enters negative number, loop is terminated

if(number < 0.0)

{

break;

}

sum += number; // sum = sum + number;

}

printf("Sum = %.2lf",sum);

return 0;

}

Output :

Enter a n1: 2.4

Enter a n2: 4.5

Enter a n3: 3.4

Enter a n4: -3

Sum = 10.30

continue Statement :-

The continue statement skips some statements inside the loop.

The continue statement is used with decision making statement such

as if...else.

Syntax of continue Statement :

continue;

Example :-

Code :

// Program to calculate sum of maximum of 10 numbers

// Negative numbers are skipped from calculation

include <stdio.h>

include <conio.h>

int main()

{

int i;

double number, sum = 0.0;

V2V CLASSES Page 6

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

for(i=1; i <= 10; ++i)

{

printf("Enter a n%d: ",i);

scanf("%lf",&number);

// If user enters negative number, loop is terminated

if(number < 0.0)

{

continue;

}

sum += number; // sum = sum + number;

}

printf("Sum = %.2lf",sum);

return 0;

}

Output :

Enter a n1: 1.1

Enter a n2: 2.2

Enter a n3: 5.5

Enter a n4: 4.4

Enter a n5: -3.4

Enter a n6: -45.5

Enter a n7: 34.5

Enter a n8: -4.2

Enter a n9: -1000

Enter a n10: 12

Sum = 59.70

Q2. a) Define Algorithm. Write Algorithm to check whether given number is

Armstrong number or not also mention input and output specifications to

algorithm.

Ans.

Algorithm :-

An Algorithm is a sequence of steps to solve a problem.

Algorithm is a step-by-step procedure, which defines a set of

instructions to be executed in a certain order to get the desired output.

Characteristics of Algorithm :-

V2V CLASSES Page 7

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

1) Finiteness -

2) Definiteness -

3) Input -

4) Output -

5) Effectiveness -

An algorithm must always terminate after a

finite number of steps.

Each step of an algorithm must be precisely

defined; the actions to be carried out must be

rigorously and unambiguously specified for

each case.

An algorithm has zero or more inputs, i.e,

quantities which are given to it initially

before the algorithm begins.

An algorithm has one or more outputs i.e,

quantities which have a specified relation to

the inputs.

An algorithm is also generally expected to

be effective. This means that all of the

operations to be performed in the algorithm

must be sufficiently basic that they can in

principle be done exactly and in a finite

length of time.

Algorithm to check whether given number is Armstrong or not :-

Step I : Start.

Step II : Input n, sum, rem, temp.

Step III : sum = 0, rem=0.

Step IV : Print “Enter an integer number : ”

Step V : Read n.

Step VI : temp = n.

Step VII : If temp is less than equal to zero Then,

Go to Step IX.

Else

rem = temp mod 10

sum = sum + (rem X rem X rem)

temp = temp / 10

Step VIII : Go to Step VII.

Step IX : If sum is equal to n Then,

Print “Number n is an Armstrong number.”

Else

Print “Number n is not an Armstrong number.”

Step X : Stop

V2V CLASSES Page 8

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q2. b) Explain various storage classes with example.

Ans.

Storage Classes :-

Storage Classes are used to describe about the features of a

variable/function. These features basically include the scope, visibility and

life-time which help us to trace the existence of a particular variable during

the runtime of a program. To specify the storage class for a variable, the

following syntax is to be followed:

Syntax:

storage_class var_data_type var_name;

C language uses 4 storage classes, namely:

i. Automatic storage class :

This is the default storage class for all the variables declared

inside a function or a block. Hence, the keyword auto is rarely used

while writing programs in C language. Auto variables can be only

accessed within the block/function they have been declared and not

outside them (which defines their scope). Of course, these can be

accessed within nested blocks within the parent block/function in

which the auto variable was declared. However, they can be accessed

outside their scope as well using the concept of pointers given here by

pointing to the very exact memory location where the variables

resides. They are assigned a garbage value by default whenever they

are declared.

ii. External storage class :

Extern storage class simply tells us that the variable is defined

elsewhere and not within the same block where it is used. Basically,

the value is assigned to it in a different block and this can be

overwritten / changed in a different block as well. So an extern

variable is nothing but a global variable initialized with a legal value

where it is declared in order to be used elsewhere. It can be accessed

within any function/block. Also, a normal global variable can be made

extern as well by placing the ‘extern’ keyword before its

declaration/definition in any function/block. This basically signifies

that we are not initializing a new variable but instead we are

using/accessing the global variable only. The main purpose of using

V2V CLASSES Page 9

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

extern variables is that they can be accessed between two different

files which are part of a large program. For more information on how

extern variables work, have a look at this link.

iii. Static storage class :

This storage class is used to declare static variables which are

popularly used while writing programs in C language. Static variables

have a property of preserving their value even after they are out of

their scope! Hence, static variables preserve the value of their last use

in their scope. So we can say that they are initialized only once and

exist till the termination of the program. Thus, no new memory is

allocated because they are not re-declared. Their scope is local to the

function to which they were defined. Global static variables can be

accessed anywhere in the program. By default, they are assigned the

value 0 by the compiler.

iv. Register storage class :

This storage class declares register variables which have the

same functionality as that of the auto variables. The only difference is

that the compiler tries to store these variables in the register of the

microprocessor if a free register is available. This makes the use of

register variables to be much faster than that of the variables stored in

the memory during the runtime of the program. If a free register is not

available, these are then stored in the memory only. Usually few

variables which are to be accessed very frequently in a program are

declared with the register keyword which improves the running time

of the program. An important and interesting point to be noted here is

that we cannot obtain the address of a register variable using pointers.

Example :-

Code :

// A C program to demonstrate different storage classes

#include <stdio.h>

#include <conio.h>

extern int x = 9;

int z = 10;

int main()

{

V2V CLASSES Page 10

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

auto int a = 32;

register char b = 'G';

extern int z;

printf("Hello World!\n");

printf("\nThis is the value of the auto " " integer 'a': %d\n",a);

printf("\nThese are the values of the" " extern integers 'x' and 'z'" "

respectively: %d and %d\n", x, z);

printf("\nThis is the value of the " "register character 'b': %c\n",b);

x = 2;

z = 5;

printf("\nThese are the modified values " "of the extern integers 'x'

and " "'z' respectively: %d and %d\n",x,z);

printf("\n'y' is a static variable and its " "value is NOT initialized to

5 after" " the first iteration! See for" " yourself :)\n");

while (x > 0)

{

static int y = 5;

y++;

printf("The value of y is %d\n",y);

x--;

}

printf("\nBye! See you soon.\n");

return 0;

}

Output :

Hello World!

This is the value of the auto integer 'a': 32

These are the values of the extern integers 'x' and 'z'

respectively: 9 and 10

This is the value of the register character 'b': G

These are the modified values of the extern integers 'x'

and 'z' respectively: 2 and 5

'y' is a static variable and its value is NOT initialized

to 5 after the first iteration! See for yourself :)

The value of y is 6

The value of y is 7

Bye! See you soon.

V2V CLASSES Page 11

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q3. a) Explain Nested Structure. Write a program using nested structure to

create an Array of structure to store the details of N students.

The details are,

1. Student name

2. Student roll no

3. Marks of Physics, Chemistry, Maths.

Calculate total of P-C-M. Display the data in the format

Name Roll no Total marks

Ans.

Nested structure :-

Nested structure in C is nothing but structure within structure. One

structure can be declared inside other structure as we declare structure

members inside a structure. The structure variables can be a normal structure

variable or a pointer variable to access the data. Nested structure in c

language can have another structure as a member. There are two ways to

define nested structure in c language:

1) Separate structure :

We can create 2 structures, but dependent structure should be

used inside the main structure as a member. Let's see the code of

nested structure.

2) Embedded structure :

We can define structure within the structure also. It requires

less code than previous way. But it can't be used in many structures.

The syntax of nested structure is given as :

struct structure_name

{

data_type variable_name;

_ _ _ _ _ _ _

struct

{

data_type variable_name;

_ _ _ _ _ _ _

internal_structure_name;

_ _ _ _ _ _ _ _

}

V2V CLASSES Page 12

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Solution Program :-

Sourse Code :

#include <stdio.h>

#include <conio.h>

struct students

{

char name[30] ;

int roll_no, total;

struct

{

int physics, chemistry, maths;

}

marks;

};

void main()

{

struct students n[100];

int n, i, j;

clrscr();

printf(“Enter number of students : ”);

scanf(“%d”, &n);

for (i=0 ; i<=n-1 ; i++)

{

printf(“Enter following details of student :- ”);

printf(“Name : ”);

scanf(“%s”, & n[i].name);

printf(“Roll number : ”);

scanf(“%d”, & n[i].roll_no);

printf(“Marks in Physics : ”);

scanf(“%d”, & n[i].marks.physics);

printf(“Marks in Chemistry : ”);

scanf(“%d”, & n[i].marks.chemistry);

printf(“Marks in Mathematics : ”);

scanf(“%d”, & n[i].marks.maths);

n[i].total = n[i].marks.physics + n[i].marks.chemistry +

n[i].marks.maths;

}

printf(“\n Name \t Roll Number \t Total \n”);

V2V CLASSES Page 13

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

printf(“ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\n”);

for (i=0 ; i<=n-1 ; i++)

{

printf(“%s \t %d \t %d \n”, n[i].name, n[i].roll_no,

n[i].total);

}

getch();

}

Output :-

Enter number of students : 3

Enter following details of student :-

Name : Saurav Palande

Roll number : 45

Marks in Physics : 50

Marks in Chemistry : 60

Marks in Mathematics : 30

Enter following details of student :-

Name : Sayali Rajapurkar

Roll number : 40

Marks in Physics : 50

Marks in Chemistry : 60

Marks in Mathematics : 40

Enter following details of student :-

Name : Amrit Shah

Roll number : 65

Marks in Physics : 60

Marks in Chemistry : 60

Marks in Mathematics : 60

Name Roll Number Total

_

Saurav Palande 45 140

Sayali Rajapurkar 40 150

Amrit Shah 65 180

V2V CLASSES Page 14

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q3. b) Define pointer and its use. Explain array of pointer with example.

Write program to swap the values by using call by reference concept.

Ans.

Pointer :-

A pointer is a variable whose value is the address of another variable,

i.e., direct address of the memory location. Like any variable or constant,

you must declare a pointer before using it to store any variable address. The

general form of a pointer variable declaration is −

type *var-name;

Uses of pointer :-

1. Pointers reduce the length and complexity of a program.

2. They increase execution speed.

3. A pointer enables us to access a variable that is defined outside

the function.

4. Pointers are more efficient in handling the data tables.

5. The use of a pointer array of character strings results in saving of

data storage space in memory.

Array of Pointers :-

Just like we can declare an array of int, float or char etc, we can

also declare an array of pointers, here is the syntax to do the

same.

Syntax :

datatype *array_name[size];

Example :

int *arrop[5];

Here arrop is an array of 5 integer pointers. It means that this

array can hold the address of 5 integer variables, or in other

words, you can assign 5 pointer variables of type pointer to int to

the elements of this array. arrop[i] gives the address of i th

element of the array. So arrop[0] returns address of variable at

position 0, arrop[1] returns address of variable at position 1 and

so on. To get the value at address use indirection operator (*).

So *arrop[0] gives value at address[0], Similarly *arrop[1] gives

the value at address arrop[1] and so on.

V2V CLASSES Page 15

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Solution Program :-

Source Code :

//Program to swap the values by using call by reference concept.

#include <stdio.h>

#include <conio.h>

void swap(int *x, int *y)

{

int t ;

t = *x ;

*x = *y ;

*y = t ;

printf(“In function :”);

printf("\nx = %d \t y = %d\n", *x,*y);

}

void main()

{

int a, b;

printf(“Enter the value of a : ”);

scanf(“%d”, &a);

printf(“Enter the value of b : ”);

scanf(“%d”, &b);

printf(“Before swapping : \n”);

printf ("\na = %d \t b = %d\n", a, b) ;

swap (&a, &b) ;

printf(“After swapping : \n”);

printf ("\na = %d \t b = %d\n", a, b) ;

getch();

}

Output :

Enter the value of a : 10

Enter the value of b : 20

Before swapping :

a=10 b=20

In function :

x=20 y=10

After swapping :

a=20 b=10

V2V CLASSES Page 16

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q4. a) Explain recursive function. Write a program to find the GCD of a

number by using recursive function.

Ans.

Recursive function :-

In C, a function can call itself. This process is known as recursion.

And a function that calls itself is called as the recursive function. In

programming languages, if a program allows you to call a function inside the

same function, then it is called a recursive call of the function. The C

programming language supports recursion, i.e., a function to call itself. But

while using recursion, programmers need to be careful to define an exit

condition from the function, otherwise it will go into an infinite loop.

Program :-

Source Code :

//Program to find GCD of a number by using recursive function.

#include <stdio.h>

#include <conio.h>

int gcd(int n1, int n2);

int main()

{

int n1, n2;

printf("Enter two positive integers : \n");

scanf("%d %d", &n1, &n2);

g = gcd(n1,n2);

printf("G.C.D of %d and %d is %d.", n1, n2, g);

return 0;

}

int gcd(int n1, int n2)

{

while (n1 != n2)

{

if (n1 > n2)

return gcd(n1 – n2, n2);

else

return gcd(n1, n2 – n1);

}

return a;

}

V2V CLASSES Page 17

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Output :

Enter two positive integers:

366

60

G.C.D of 366 and 60 is 6.

Q4. b) Write a program to perform matrix multiplication by passing input

matrix to the function and printing resultant matrix.

Ans.

Program :-

Sourse code :

//Program for matrix multiplication using functions.

#include <stdio.h>

#include <stdlib.h>

void input(int m, int n, int a[m][n])

{

for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {

printf("%d, %d : ", i, j);

scanf("%d", &a[i][j]);

}

}

}

void print(int m, int n, int a[m][n])

{

int i, j;

for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {

printf("%3d ", a[i][j]);

}

printf("\n");

}

}

void multiply(int m, int n, int p, int a[m][n], int b[n][p], int c[m][p])

V2V CLASSES Page 18

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

{

for (int i = 0; i < m; i++) {

for (int j = 0; j < p; j++) {

c[i][j] = 0;

for (int k = 0; k < n; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

}

}

void main()

{

int r1, c1, r2, c2;

printf("Row and column for matrix #1 :\n");

scanf("%d %d", &r1, &c1);

printf("Row and column for matrix #2 :\n");

scanf("%d %d", &r2, &c2);

if (r2 != c1) {

printf("The matrices are incompatible.\n");

exit(EXIT_FAILURE);

}

int mat1[r1][c1], mat2[r2][c2], ans[r1][c2];

printf("Enter elements of the first matrix.\n");

input(r1, c1, mat1);

printf("The elements of the first matrix are :\n");

print(r1, c1, mat1);

printf("Enter elements of the second matrix.\n");

input(r2, c2, mat2);

printf("The elements of the second matrix are :\n");

print(r2, c2, mat2);

multiply(r1, r2, c2, mat1, mat2, ans);

printf("The product is :\n");

print(r1, c2, ans);

getch();

}

V2V CLASSES Page 19

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Output :

Row and column for matrix #1 :

2

2

Row and column for matrix #2 :

2

2

Enter elements of the first matrix.

0, 0 : 1

0, 1 : 17

1, 0 : 25

1, 1 : 30

The elements of the first matrix are :

1 17

25 30

Enter elements of the second matrix.

0, 0 : 74

0, 1 : 89

1, 0 : 3

1, 1 : 65

The elements of the second matrix are :

74 89

3 65

The product is :

125 1194

1940 4175

V2V CLASSES Page 20

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q5. a) Write a program to display following pattern:

1

232

34543

4567654

567898765

Ans.

Program :-

Source code :

#include <stdio.h>

#include <conio.h>

void main()

{

int i, s, r, k=0, c=0, j=0;

printf(“Enter the number of rows : “);

scanf(“%d”, &r);

for(i=1 ; i<=r ; i++)

{

for(s=1 ; s<=r-i ; s++)

{

prinf(“ ”);

c++;

}

while(k != 2*i-1)

{

if(c<=r-1)

{

printf(“%d”,(i+k));

c++;

}

else

{

j++;

printf(“%d”,(i+k-2*j));

}

++k;

}

V2V CLASSES Page 21

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

j=c=k=0;

printf(“\n”);

}

getch();

}

Output :

Enter the number of rows : 5

1

232

34543

4567654

567898765

Q5. b) Write user defined function to implement string concatenation.

Ans.

Program :-

Source code :

#include<stdio.h>

#include<string.h>

void concat(char[], char[]);

int main() {

char s1[50], s2[50];

printf("\nEnter String 1 :");

gets(s1);

printf("\nEnter String 2 :");

gets(s2);

concat(s1, s2);

printf("\nConcated string is :%s", s1);

return (0);

}

void concat(char s1[], char s2[])

{

int i, j;

i = strlen(s1);

V2V CLASSES Page 22

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

for (j = 0; s2[j] != '\0'; i++, j++)

{

s1[i] = s2[j];

}

s1[i] = '\0';

}

Output :

Enter String 1 : Prathamesh

Enter String 2 : Padave

Concated string is : PrathameshPadave

Q5. c) Explain need of file data and various modes of files also write program

to create edit copy of file.

Ans.

File Handling :-

File handling is an important part for any language. File handling

helps you to store data (any type of data) in a controlled manner like for

cookies, for any type of configurations etc. A file represents a sequence of

bytes on the disk where a group of related data is stored. File is created for

permanent storage of data. The fopen() function is used to create a new file

or to open an existing file.

General Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to

the opened(or created) file. Filename is the name of the file to be opened and

mode specifies the purpose of opening the file. Mode can be of following

types,

 r - opens a text file in reading mode

 w - opens or create a text file in writing mode.

 a - opens a text file in append mode

 r+ - opens a text file in both reading and writing mode

 w+ - opens a text file in both reading and writing mode

V2V CLASSES Page 23

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

 a+ - opens a text file in both reading and writing mode

 rb - opens a binary file in reading mode

 wb - opens or create a binary file in writing mode

 ab - opens a binary file in append mode

 rb+ - opens a binary file in both reading and writing mode

 wb+ - opens a binary file in both reading and writing mode

 ab+ - opens a binary file in both reading and writing mode

Program :-

Source code :

/* Program to create edit copy of file */

include <stdio.h>

#include <conio.h>

void main()

{

FILE *fp ;

char sub[50], temp[20];

int s, t;

clrscr();

fp=fopen(“Exam.txt”,”w+”);

printf(“Enter seat number and subject of the candidate : ”) ;

scanf(“%d %s”, &s, &sub);

printf(“ Seat No \t Subject \n”);

rewind(fp);

fscanf(fp,”%s %d”, &temp, &t);

printf(“%s %d”, temp, t);

fclose(fp) ;

return 0;

}

Output :-

Enter Seat number and Subject of the student : 2001

Chemistry

Seat number Subject

2001 Chemistry

V2V CLASSES Page 24

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Q6. a) Write a program to sort given array in ascending order.

Ans.

Program :-

Source code :

//Program to sort given array in ascending order

#include <stdio.h>

#include <conio.h>

void main()

{

int i, j, a, n, array[50];

printf("How many numbers in an array…? \n");

scanf("%d", &n);

printf("Enter the numbers. \n");

for (i = 0; i < n; i++)

scanf("%d", &array[i]);

for (i = 0; i < n; i++)

{

for (j = i + 1; j < n; j++)

{

if (number[i] > number[j])

{

a = number[i];

number[i] = number[j];

number[j] = a;

}

}

}

printf("The numbers arranged in ascending order are given

below \n");

for (i = 0; i < n; ++i)

printf("%d\n", number[i]);

getch();

}

V2V CLASSES Page 25

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Output :

How many numbers in an array…?

5

Enter the numbers.

3

1

456

200

150

The numbers arranged in ascending order are given below

1

3

150

200

456

Q6. b) Write a program for finding sum of series 1+2+3+4+…….upto n terms.

Ans.

Program :-

Source code :

//program to calculate sum of series up to n terms 1 + 2 + 3 +…+n.

#include <stdio.h>

#include <conio.h>

void main()

{

int n,i;

int sum=0;

printf("Enter the n i.e. max value of series: ");

scanf("%d",&n);

sum = (n * (n + 1)) / 2;

printf("Sum of the series: ");

for (i =1 ; i <= n ; i++)

{

if (i!=n)

V2V CLASSES Page 26

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

else

}

getch();

}

printf("%d + ",i);

printf("%d = %d ",i,sum);

Output :-

Enter the n i.e. max value of series: 5

Sum of the series: 1 + 2 + 3 + 4 + 5 = 15

Q6. c) Draw the flow chart to find roots of a quadratic equation.

Ans.

Algorithm :-Step

I : Start.

Step II : Input a,b,c,del,r1,r2.

Step III : Print “Enter the value of coefficient of the X^2.”

Step IV : Read a.

Step V : Print “Enter the value of coefficient of the X.”

Step VI : Read b.

Step VII : Print “Enter the value of constant C.”

Step VIII : Read c.

Step IX : del = b X b – 4 X a X c

Step X : If del is less than zero Then,

r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

r2 = (-b / (2 X a)) - sqrt (del) / 2 X a

Print “Roots are complex and unequal.”

Print “The roots for the entered values are r1 and r2.”

Else - if del is greater than zero Then,

r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

r2 = (-b / (2 X a)) - sqrt (del) / 2 X a

Print “Roots are real and unequal.”

Print “The roots for the entered values are r1 and r2.”

Else,

r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

Print “Roots are real and equal.”

Print “The root for the entered values is r1.”

Step XI : Stop

V2V CLASSES Page 27

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,

Flowchart :-

V2V CLASSES Page 28

